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The following is a set of outlines and bibliographies for lectures presented at a 
Summer Workshop on Nonequilibrium Phenomena held from June 22 to July 3, 
1981 at the Institute for Theoretical Physics in Santa Barbara. These outlines 
were distributed to the participants in lieu of formal proceedings, and they are 
being presented for publication in the same form, in the belief that the informa- 
tion they contain will be useful to a wider audience. It should be clearly stated, 
however, that the compilation is an informal one which does not claim to be a 
complete survey of the subject. 

KEY WORDS: Nonequilibrium phenomena; dynamical systems; hydrody- 
namic stability; onset of turbulence. 

A. SUMMARY OF THE WORKSHOP 

The  ma in  pu rpose  of this workshop  was to examine  recent  m a t h e m a t i c a l  
deve lopment s  in the areas  of non l inea r  systems, b i fu rca t ion  theory,  a n d  

ergodici ty ,  a n d  to explore  app l i ca t ions  of these deve lopmen t s  to phys ica l  
theories  of  nonequ i l ib r ium p h e n o m e n a .  The  p h e n o m e n a  of p r inc ipa l  inter-  
est were instabil i t ies,  pa t t e rn  format ion ,  and  the t rans i t ion  f rom regular  to 

chaot ic  behavior .  The  phys ica l  s i tuat ions  inc luded  convect ion ,  T a y l o r -  
Couet te  flow, nuclea t ion ,  sp inoda l  decompos i t ion ,  sol idif icat ion,  chemica l  
react ions,  and  b io logica l  processes.  

The  first  goal  of the lectures a n d  discussions was to ident i fy  i m p o r t a n t  
quest ions  in the f ield of nonequ i l ib r ium p h e n o m e n a .  A m o n g  these ques- 
t ions were the fol lowing:  
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How does one characterize and classify the steady states which are 
obtained under constant external conditions away from thermodynamic 
equilibrium? [It is assumed that these steady states have simpler behavior 
than arbitrary nonequilibrium states.] 

Are there general techniques for classifying the spatial and temporal 
patterns which emerge in such systems? 

How are patterns selected? Under what conditions, if any, is there a 
functional whose extrema describe steady states? What is the role of noise 
in pattern selection? What is the role of defects in spatial structures? 

What are the essential differences between externally driven nonequi- 
librium steady states, e.g., cellular convection, Taylor-Couette flow, etc., 
and freely equilibrating systems such as those undergoing nucleation or 
spinodal decomposition? 

Is there a deep similarity between thermodynamic phase transitions 
and transitions between steady states of nonequilibrium systems, e.g., 
transitions from thermal conduction to stationary convection, from station- 
ary convection to oscillation, or from oscillation to temporal chaos, in the 
Rayleigh-Brnard system? Do the latter transitions exhibit any form of 
universality? 

What are the relative merits of various theoretical methods for the 
study of nonequilibrium phenomena, e.g., rigorous mathematical theorems, 
exactly soluble models, systematic expansions, phenomenological theories, 
computer simulations? 

What physical systems reveal basic nonequilibrium phenomena most 
simply? Conversely, how do we interpret various natural phenomena in 
terms of basic principles? Pattern formation and chaotic behavior occur in 
geophysics, oceanography, astrophysics, ecology, biology, chemistry, metal- 
lurgy, etc. What insight do we gain concerning natural phenomena by the 
study of simple experimental systems and mathematical models? 

This program of lectures is summarized in the list of speakers and 
topics and described in more detail in the accompanying outlines and 
bibliographies. 

The series of lectures by Lanford, Marsden, Rand, and Guckenheimer 
provided mathematical background in the theory of dynamical systems 
with emphasis on bifurcation theory and the use of measure theoretic 
concepts. These lectures dealt in some detail with the classification of 
steady states in relatively simple systems--the occurrence of fixed points 
and limit cycles and the mechanisms by which such structures can evolve 
into much more complicated ones containing "strange attractors," "strange 
saddles," etc. 

Much attention was paid to the use of one- or two-dimensional maps 
as representations or models of dynamical systems. Feigenbaum described 
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the appearance of universal (model-independent) features in one- 
dimensional maps which exhibit cascades of period-doubling transitions. 
The recent observation of such transitions in Rayleigh-B6nard convection 
offers the possibility of applying the Feigenbaum theory to real systems (see 
lectures by Ahlers). 

A topic which arose throughout the workshop was the role of noise, 
both imposed by external sources and arising dynamically within the 
system itself. Methods for dealing with systems driven by external noise 
were described by Caroli in her lectures on stochastic processes. The 
problems of characterizing the noise spectrum in deterministic systems 
exhibiting chaos were discussed by Lanford and Rand (lectures VI and 
XII). A new and important class of problems arises when one imposes noise 
externally on a deterministic system which, by itself, undergoes a transition 
to chaotic behavior. These problems were described by Rudnick and also 
touched upon by Rand (XII) and by Martin in his concluding remarks. 

The most carefully studied physical realizations of nonequilibrium 
phenomena occur in hydrodynamics, especially Rayleigh-B6nard convec- 
tion and Taylor-Couette flow. The experimental situation in this area was 
described in the lectures by Gollub, Ahlers, Swinney, and Busse. Related 
theoretical developments were presented by Cross, Busse, Rand, and Siggia. 
Work in this area falls roughly into two categories: systems with a small 
number of convective cells where only a small number of hydrodynamic 
degrees of freedom seem to be relevant, and large systems with many 
degrees of freedom where the picture changes qualitatively. In the case of 
small systems which are stabilized by lateral boundaries, there are indica- 
tions that the various routes from conduction through convection to chaos 
may be found to correspond to generic behavior of a relatively small class 
of tractable dynamical models. For large systems, on the other hand, 
problems relating to pattern selection and stability become acute, and no 
clear picture has yet emerged. 

The remaining lectures in the workshop were devoted to physical 
systems where nonhydrodynamic features come into play, but where many 
of the concepts discussed above ought still to be important. Gunton's 
lectures on the kinetics of first-order phase transitions pertained explicitly 
to equilibrating as opposed to steadily driven systems--systems for which a 
free-energy minimization principle clearly exists and, at least in principle, 
solves the pattern-selection problem. Langer discussed pattern formation 
during solidification, also a first-order phase transition, but one in which 
the interesting phenomena are best described in the language of dynamical 
systems. In particular, directional solidification problems bear analogies to 
Rayleigh-B6nard convection in large systems, and pose essentially the 
same questions regarding pattern selection. Dendritic solidification seems 
to be qualitatively different, and poses a number of interesting new stability 
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problems. The dynamics of chemical reactions were discussed by Swinney 
in a specific example of a system exhibiting periodic and chaotic behavior, 
and also by Ortoleva in a variety of chemical and geological systems. 
Finally, Ortoleva and Segel presented a number of examples of complex 
dynamical behavior in biological and ecological systems, where one might 
hope to find natural examples of the phenomena studied earlier. 
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LIST OF SPEAKERS AND TOPICS 

Introductory Overview 

Mathematical Theory of Dynamical Systems 

Universality in Period-Doubling Models 
Period Doubling in Iterated Maps 
Studies of the Transition to Turbulent Convection 
Using Scattered Laser Light 
Experiments on Horizontal Layers of Fluid Heated 
from Below 
Instabilities and Chaos in the Couette-Taylor Sys- 
tem and Complex Dynamics in Nonequilibrium 
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Amplitude Equation for the Description of Convec- 
tion near Onset 
Hydrodynamics of Convection 
Topics in the Theory of Convective Structures 
Kinetics of First-Order Phase Transitions 
Introduction to Stochastic Processes 
Solidification Patterns 
Nonequilibrium Phenomena in Chemistry and Biol- 
ogy 
Nonequilibrium Phenomena in Biology and Ecol- 
ogy 
Concluding Summary 
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Introduction to Dynamical Systems (Marsden) 
1. Basic terminology, flows, fixed points, characteristic exponents, 

periodic orbits, examples 
2. Invariant manifolds, insets, outsets, homoclinic orbits 
3. Poincar6 maps, forced oscillations, periodic orbits 
4. Bifurcations, saddle-node, Hopf, period doubling, torus, homo- 

clinic bifurcations 

(Refs. 56, 28, 7, l, 2) 

II. Invariant Measures and Ergodic Theory (Lanford) 
1. Existence of time averages is not automatic 
2. Statistically regular orbits and their asymptotic distributions 
3. Terminology: measure, probability measure, invariance of a mea- 

sure under a mapping, abstract dynamical system 
4. Poincar6 recurrence theorem ~ and their limitations: 

5. Birkhoff pointwise ergodic theorem ~ set of measure 
J zero need not be small 

6. Ergodicity and mixing property: definition and interpretation 
7. Examples 

(Refs. 24, 8, 55) 

III. The Horseshoe and Solenoid (Rand) 
1. Relation to homoclinic orbits 
2. Geometric construction of the horseshoe, invariant set A, non- 

wandering points 
3. Symbolic dynamics, periodic and dense orbits, Cantor set 
4. Solenoid as a strange attractor, horseshoe as a strange saddle 

(Refs. 56, 48, 9) 
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IV. Ruelle-Bowen Ergodic Theorem (Lanf'ord) 
1. Rough statement 
2. Sketch of proof for the solenoid 

(Refs. 9, 10, 53) 

V. Finding Horseshoes (Marsden) 
1. Discussion of why horseshoes may be important, comparison 

with strange attractors 
2. Horseshoes and other bifurcations in forced oscillations; Dulling 

and beam equations 
3. Horseshoes in autonomous equations, pendulum-oscillator and 

rigid body 

(Refs. 56, 30-36) 

VI. Lyapunov Exponents and Elementary Time Series (Lanford) 
1. Lyapunov exponents 

a. One-dimensional case (and why the multidimensional case is 
essentially more complicated) 

b. Oseledec multiplicative ergodic theorem; definition of 
Lyapunov exponents 

(Ref. 54) 

2. Time series (elementary) 
a. Definitions: covariance, periodogram, power spectrum 
b. Relation between periodogram and power spectrum 
c. Why are measured power spectra "rough" and how can they 

be smoothed? 

(Ref. 11) 

VII. Modulated Waves (Rand) 
1. Axisymmetric dissipative systems and the route to turbulence via 

rotating and modulated waves 
2. Spatiotemporal symmetry group 
3. Stationary axisymmetric flow 
4. Onset of time dependence 
5. Rotating waves 
6. Bifurcation to quasiperiodic flow 
7. Modulated waves 

a. Phase functions and wave frequencies 
b. Spatiotemporal structure 
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c. Dynamics and frequencies 
d. Possible values of the modulation angle 

(Refs. 52, 16) 

VIII. Rigorous Results on the Feigenbaum Cascade (Lanford) 
1. The one-dimensional doubling operator 
2. Status of proofs of the Feigenbaum conjectures 
3. Construction of the n-dimensional doubling operator 
4. The Feigenbaum conjectures in n dimensions follow from the 

one-dimensional case 

(Refs. 15, 14, 39, 40) 

IX. Codimension One Bifurcations (Guckenheimer) 
1. Introduction via the Rayleigh-Brnard convection problem 
2. Normal forms for saddle-node, Hopf, and pitchfork 
3. The role of the trivial solution and symmetry in the pitchfork 
4. Saddle-loop bifurcation 

X. Bifurcation Theory for Partial Differential Equations (Marsden) 
1. Center manifolds for evolution operators 
2. Use of center manifolds in bifurcation problems 
3. Reduction to finite dimensions 
4. Examples: Navier-Stokes equations, reaction-diffusion equa- 

tions, panel flutter 

(Refs. 44, 25, 12, 27) 

XI. The Lorenz Attractor (Guckenheimer) 
1. Geometric description of Lorenz attractor 
2. Lorenz equations 
3. Bifurcation sequence (0 < R < 25) producing Lorenz attractor 

interpreted with one-dimensional mapping 

(Refs. 42, 38, 22) 

XII. Reconstructing Dynamical Systems (Rand) 
1. Reconstructing an attractor from a single time series 
2. Determination from the time series of metric quantities such as 

the capacity of the attractor, topological entropy, asymptotic 
measure, and metric entropy 

(Refs. 57, 52) 
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XIII. Codimension-Two Bifurcations (Guckenheimer) 
1. Rotating and double diffusive convection as motivating examples 
2. Codimension-two bifurcations as technique for finding sequence 

of bifurcations 
3. Classification and analysis of codimension-two bifurcations 
4. Applications of theory to rotating convection 

(Refs. 19, 20) 

XIV. Horseshoes and Arnold Diffusion (Marsden) 
1. Horseshoes for the forced Duffing equation 
2. Horseshoes in Hamiltonian systems 
3. Arnold diffusion 
4. KAM theory compatible with Melnikov method 

(Refs. 46, 4, 1, 6, 26, 31-36) 

XV. Strange Attractors (Guckenheimer) 
1. Axiom A attractors, and lack of axiom A attractors in physical 

systems 
2. Henon "attractor" as model problem 
3. Newhouse theorem 
4. One-dimensional map as singular limit of Henon map 
5. Theory of rotation numbers 
6. Jacobson's theorem 

(Refs. 49, 50, 37, 18) 
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1. An intuitive account of the fixed point theory 
a. Rate of parameter convergence 
b. Local scaling 
c. Universality as a consequence of the fixed point of an operator 

2. The formal fixed point theory 
a. The fixed point functional equation 
b. The derivative map at the fixed point and its spectrum 

3. The nature of the attractor 
a. Local scalings and the trajectory scaling function 
b. The fractional nature of the attractor 

4. The Fourier spectrum of period-doubling models 
a. The spectral recursion formula 
b. Spectral moments and interpolations 
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Period Doubling in Iterated Maps 

J. Rudnick 
Department of Physics 
University of California 
Santa Cruz, California 95064 

1. Critical Phenomena: critical exponents and universal scaling functions 
2. The period-doubling sequence: the universal numbers a and ~ of 

Feigenbaum 
3. The behavior of the Lyapunov exponent in the immediate vicinity of 

the transition: 
a. Its gross behavior described by a critical exponent 
b. Its fine structure repeated on smaller and smaller scales 

4. The structure of orbits in the highly bifurcated regime: a correlation 
function with power law behavior at the accumulation point 

5. External noise, its critical exponent and a universal scaling function for 
the Lyapunov exponent in the vicinity of the transition in the presence 
of noise 
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The power spectrum of the iterated map and its behavior near the 
accumulation point of the series of period-doubling bifurcations 
a. The bifurcation sequence and the appearance of subharmonics 
b. A scaling relation between subharmonics 

7. Tests of scaling in the power spectrum 
a. The R6ssler attractor 
b. Experimental results in Rayleigh-B6nard convection 

8. The appearance of bands and the reverse bifurcation sequence: the 
origin of noise in the power spectrum on the chaotic side of the 
transition 

9. Interesting recent work on iterated maps 
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Studies of the Transition to Turbulent Convection Using 
Scattered Laser Light 

J. P. Gollub 
Depar tment  of Physics 
Haverford College 
Haverford,  Pennsylvania 19041 

The Rayleigh-B6nard Instability (Refs. 1, 8) 
1. Parameters of the problem 
2. Relevant hydrodynamic equations 
3. Nonideal boundary conditions in real experiments 
4. Laser light scattering (Ref. 2) 

II. Routes to Turbulence at Small Aspect Ratio (Refs. 2, 5, 10, 11, 13) 
1. Multiplicity of spatial states 
2. Quasiperiodicity and phase locking 
3. Analogy to coupled oscillator systems (Ref. 7) 
4. Attempted visualization of a torus 
5. States with three incommensurate frequencies 
6. Subharmonic bifurcations 
7. Complex spatial structure of the oscillations 
8. Intermittent turbulence 
9. Response to externally imposed noise (Ref. 4) 

III .  Chaos on a Fluid Surface: Faraday 's  Crispations (Ref. 6) 
I. A symmetry-breaking oscillatory instability 
2. Transition from few to many  degrees of freedom 
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IV. Large Aspect Rat io  Convect ion  Experiments  (Refs. 3, 9) 

1. Existence of the t ime- independen t  regime 

2. Spatial structures of steady flows: wall effects, defects, disloca- 

tions, nonuniqueness ,  and  "annea l ing"  
3. Doppler  imaging of the onset  of time dependence:  a structural  

instabil i ty 

4. Statistics of the time dependence  above the onset  of turbulence:  
extremely long-last ing correlations 

5. Relat ionship to stability theory and  summary  
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R c is compared with the predictions of perturbation expansions. 

11. P. BergS, M. Dubois, P. Manneville, and Y. Pomeau, "Intermittency in Rayleigh-B~nard 
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Experiments on Horizontal Layers of Fluid Heated from Below 

G. Ahlers 
Depar tmen t  of Physics 
Universi ty of California 
Santa Barbara,  California 93106 

I. Ray le igh -Brna rd  Instability 
1. Rounding  near  convective onset (Refs. 1, 2, 4, 11, 17, 21, 22, 27) 
2. Initial slope of the Nusselt  number  (Refs. 1, 2, 4, 23, 11, 28, 15, 8) 
3. Time dependence  of the evolution of flow (Refs. 10, 8) 
4. Uniqueness  of the state above R C (Refs. 9, 1, 11) 
5. Long-lived transients (Refs. 9, 11) 
6. Non-Boussinesq effects (Refs. 3, 29, 13) 

II. Evolut ion of Turbulence  
1. Small aspect ratios 

a. Limit  cycle ~ torus ~ strange at t ractor  (Refs. 5, 6, 4) 
b. Period doubling (Refs. 24, 25, 19) 
c. F requency  locking [Refs. 24, 25, Ahlers (unpublished)] 

2. Larger  aspect ratio and evidence for stochastic origin of turbulence 
a. Algebraically decaying spectra (Refs. 1, 4, 5, 20) 
b. Oscillatory instability (Refs. 5, 16, 14) 
c. Existence of nonper iodic  states immediately above Rc (Refs. 5, 9, 

20) 
d. Exponent ia l  divergence o f  the time scale near  R~ (Refs. 9, 20) 
e. Large aspect ratio Tay lor  vortex flow (Refs. 18, 7) 
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instabilities and Chaos in the Couette-Taylor System 

Har ry  Swinney 
Depar tmen t  of Physics 
Universi ty of Texas 
Austin, Texas 78712 
(in col laborat ion with M. Gorman ,  L. A. Reith, and  C. D. Andereck)  

1. The pr imary  instability in the flow between concentr ic  rotat ing cylin- 
ders (Couette flow) 
a. Rayleigh criterion 
b. Taylor  instability 

2. Instabilities with the inner cylinder rotat ing and the outer cylinder at 
rest 
a. Periodic states (wavy vortex flow): nonuniqueness,  dislocations, 

wave speed variat ion 
b. Doub ly  periodic states (modula ted  wavy vortex flow): space-time 

symmetries, the rotat ing annulus 
c. Onset  of chaos 
d. Higher  instabilities 
e. Other  phenomena  

3. Instabilities with both  cylinders rotat ing 
a. Counterrota t ing cylinders 
b. Corota t ing cylinders 
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Complex Dynamics in a Nonequilibrium Chemical Reaction 

Harry  Swinney 

Depa r tmen t  of Physics 
Univers i ty  of Texas 

Austin,  Texas 78712 
(in col laborat ion with J.-C. Roux, J. S. Turner ,  and  W. D. McCormick)  

1. The Belousov-Zhabot insk i i  react ion in a stirred flow reactor 
2. Exper imental  observations of a l ternat ing periodic and  chaotic regimes 

in the Be lousov-Zhabot insk i i  react ion 
a. The t ransi t ion sequence (time series and  power spectra) 
b. Determinis t ic  chaos (phase space portraits a nd  re turn  maps)  
c. Compar i son  of the sequences observed b y  H u d s o n  and  co-workers, 

the Bordeaux group, and  the Texas group 
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. Alternating periodic and chaotic regimes in the BZ reactions: a numeri- 
cal study by J. S. Turner of a Field-Noyes model of the Belousov- 
Zhabotinskii reaction 
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Amplitude Equation for the Description of Convection near Onset 

M. C. Cross 
Bell Laboratories 
Murray Hill, New Jersey 07974 

I. Derivation of the Amplitude Equation 
1. Method of multiple scales (Newell and Whitehead) 
2. Projection onto critical modes 

II. Simple Solutions and Experimental Illustration 
1. Stationary solutions and instabilities in the laterally infinite region 
2. Dynamics: forced phase diffusion and onset experiments 

III. Boundary Effects on Pattern Selection 
1. Existence of a Lyapunov functional 
2. Lateral boundary conditions for the envelope function--solution 

near a boundary and experimental confirmation 
3. Applications--two-dimensional patterns: wave vector selection 

three-dimensional patterns: "textures" 
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45:898 (1980). 

Solutions to Amplitude Equations with Lateral Boundaries: 
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15. J. Wesfreid, Y. Pomeau, M. Dubois, C. Normand, and P. BergS, "Critical Effects in 
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Hydrodynamics of Convection 

F. H. Busse 
Department of Earth and Space Sciences 
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I. Weakly Nonlinear Convection (Refs. 1-10, 35, 12, 16, 18, 15, 22) 
1. Introduction to Rayleigh-B6nard convection; definitions 
2. Linear theory; orientational degeneracy, pattern degeneracy 
3. Small amplitude expansion; reduction of degeneracy by nonlinear- 

ity 
4. Discussion of roll-, square-, hexagon-pattern convection 
5. Stability analysis; roll-hexagon competition; hysteresis effects 
6. Extremum principle for existence and stability of steady solutions 
7. Wavelength changing instabilities (with short movie) 
8. Weakly nonlinear convection in spherical shells 

II. Fully Nonlinear Convection (Refs. 11, 14, 17, 20, 23-26) 
1. Numerical computations of two-dimensional convection 
2. Stability analysis of convection rolls as a function of wave number, 

Rayleigh number, and Prandtl number 
3. Thermal boundary layer instability at high Prandtl number; bi- 

modal convection 
4. Transition to oscillatory instability at low Prandtl number 
5. Comparison with experiments based on controlled initial condi- 

tions 
6. Oscillatory bimodal and spoke pattern convection 
7. Evolution of turbulent convection (with movie) 

III. Convection in a Rotating Layer (Refs. 19, 21, 27, 30, 33, 34) 
1. General remarks on convection in rotating systems 
2. Weakly nonlinear analysis 
3. Kuppers-Lortz instability 
4. Numerical analysis of two-dimensional convection; stability prop- 

erties 
5. Time dependence of three-mode problem 
6. Interaction of patches of convection rolls 
7. Transition to turbulence via the statistical limit cycle route 
8. Experimental observations (with movie by Heikes and Busse) 
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Topics in the Theory of Convective Structures 

E. D. Siggia 
Physics Depar tmen t  
Cornell  Universi ty  
Ithaca,  New York 14853 

I. Onset  of Three-Dimens iona l  Convect ion  
1. Free-slip horizontal  b o u n d a r y  condi t ions  in laterally infini te  system 

(exact analyt ic  expansion and  numer ica l  s imulations) 

a. Effect of vertical vorticity 
b. Modif ica t ion of earlier ampl i tude  equa t ion  a nd  stability d iagram 

near  threshold 
c. Effect of Prandt l  n u m b e r  
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2. Rigid horizontal boundary conditions in laterally infinite system 
(semiphenomenological theory) 
a. Justification of earlier amplitude equation 
b. Effect of Prandtl number on stability diagram near threshold 

3. Effect of lateral boundaries 
a. Periodic boundary conditions 
b. Realistic boundary conditions 

II. Defects in Convective Structures 
1. Numerical simulation 
2. Analytic results from amplitude equation 
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Kinetics of First-Order Phase Transitions 

J. D. Gunton 
Physics Department 
Temple University 
Philadelphia, Pennsylvania 19122 

I. Kinetics of Metastable States (Refs. 1-11) 
1. Summary of general nucleation theory 
2. Simple model of a binary fluid 
3. First-order phase transition: Critical droplet and surface wobbles 

(Refs. 2, 11) 
4. Dynamic prefactor 
5. Comparison with experiment: Near-critical completion theory 

(Refs. 6-10) 
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S p i n o d a l  D e c o m p o s i t i o n  (Refs.  12-20)  

1. L i n e a r  s tabi l i ty  ana lys i s  
2. N o n l i n e a r  theo ry  (Ref.  13) 

3. L i f sh i t z -S lyozov  theory  

4. Sca l ing  resul ts  
5. R e n o r m a l i z a t i o n - g r o u p  ca l cu l a t i on  of coarse  g r a i n e d  free energy  

(Refs.  14, 20) 

6. O u t s t a n d i n g  p r o b l e m s  
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SPINODAL DECOMPOSITION 
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Introduction to Stochastic Processes 

Christiane Caroli 
Groupe  de Physique des Solides de I 'ENS 
Universit6 de Paris VII  
75221 Paris, F rance  

I. Langevin,  Fokker -P lanck ,  and  Master  Equa t ions- -Heur i s t i c  Presenta- 
t ion 
(The nature of the physical  p rob l em- - s low  and  fast variables) 
1. The Langevin scheme 

a. The linearized Langevin equation:  Physical assumptions;  time 
scales (Refs. 1-5) 

b. Diffusion of a free Brownian particle 
c. The f luctuat ion-diss ipat ion theorem 
d. The retarded K u b o - M o r i  extension (Refs. 5, 7) 
e. The  nonl inear  Langevin equat ion (Ref. 16) 

2. The F o k k e r - P l a n c k  and  master  equations 
(Distribution function. Separat ion of t ime scales and Markov  pro- 
cesses) 
a. Transit ion probabilities in the weak collision limit; the F o k k e r -  

Planck equat ion (Refs. 1, 2, 3, 6) 
b. The limit of rare collisions; the master  equation; equilibrium and 

detailed balance  
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II. 

c. Weak  and  rare collisions; equivalence between F o k k e r - P l a n c k  
and  master  equation; objections to the nonlinear  FP  equation 
(Refs. 6, 8, 9) 

Fluctuat ions and relaxation in systems described by nonlinear  FP  
equations 
(The one-variable equation, stat ionary solution and  free-energy mini- 
mization) 

a. Linear forces; exact solution (Refs. 1, 2) 
b. Nonl inear  forces; stability and metastability; two types of bifur- 

cations: physical  examples 
c. Small f luctuations; driving of fluctuations by average values. A n  

example:  enhancement  of f luctuations during the sweeping of a 
hysteresis cycle (Refs. 6, 9, 10) 

d. Exchange of particles between locally stable states: Kramers '  
time (Refs. 11, 12) 

e. Evolut ion f rom the vicinity of a point  of instability. "Spinodal  
decomposi t ion"  in a one-variable system: Suzuki's time (Refs. 
13-15) 

f. M a n y  variable systems (mostly questions) 
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Solidification Patterns 

J. S. Langer 
Physics Department 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

I. Directional Solidification: B6nard Analogs 
1. Mullins-Sekerka instability (Refs. 3-5) 
2. Cellular solidification fronts (Refs. 1, 6-9) 
3. Amplitude equations 
4. Pattern-selection problem 

II. Directional Solidification of Eutectics 
1. Steady-state theory (Ref. 10) 
2. Instabilities and fluctuations (Refs. 11, 12) 
3. Nonlinear stochastic models (Refs. 2, 11) 

III. Dendrites 
1. Steady-state calculations, experiments (Refs. 13-15) 
2. Stability theory (Refs. 1, 16, 17) 
3. Nonlinear models 
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Nonequilibrium Phenomena in Chemistry and Biology 

Peter Ortoleva 
Department of Chemistry 
Indiana University 
Bloomington, Indiana 47405 

I. Instabilities and Pattern Formation in Chemistry and Geology 
1. Patterning instability in the uniform sol (Refs. 1-6) 

a. Kinetics of first-order phase transitions and transport 
b. The invariant pattern length 
c. Evolution of stochastic initial data 
d. Electroinfusion solitons and their breakdown 

2. Survey of patterning phenomena in rocks (Refs. 7-9) 
a. Plagioclase feldspar periodic zoning: A Stefan problem in com- 

plex melt growth 
b. Agates: Banding and twist correlation in fibrous quartz 
c. Orbicular granites 
d. Iron banding 
e. Metamorphic layering 
f. Stylolites 
g. Other examples 
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3. Metamorphic layering (Refs. 10-12) 
a. Stress and pressure solution kinetics 
b. Kinetic equations 
c. Equilibrium constant functional and the Curie principle 
d. Instability to pattern formation 
e. Numerical simulation of spontaneous metamorphic patterning 

4. Stylolites (Ref. 13) 
a. Occurrences 
b. Porosity feedback 
c. Simple and complex mathematical models 

II. Biological and Mathematical Topics 
1. Developmental bioelectricity 

a. Survey (Refs. 15-19) 
b. Early Fucus egg development 
c. Mechanisms of electrophysiological self-organization 
d. Quantitative modeling 
e. Electrophysiological stability diagram 
f. Polar and quadrupolar (defect) states 
g. Inverted bifurcation 
h. Inherent asymmetry, applied fields and imperfect bifurcation 

2. Mathematical methods 
a. Relating attracting manifolds in ODEs and PDEs of chemical 

reaction: catastrophe and propagation (Refs. 23, 24) 
b. Limit cycles in ODEs: An organizer of complex spatiotemporal 

behavior (Refs. 25-28) 
c. Pad6 approximants in nonlinear PDE problems (Refs. 29, 30) 
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Nonequil ibrium Phenomena in Biology and Ecology 

Lee A. Segel 
Depar tmen t  of Appl ied Mathemat ics  
We izmann  Institute 
Rehovot ,  Israel 

1. Slime mold  aggregation 
a. The Keller-Segel  equat ion (Refs. 1-3) 
b. Simulations (Refs. 4, 5) 
c. Developmenta l  transitions in c A M P  signaling (Ref. 6) 

2. Chemotac t ic  bacteria:  traveling waves and  biased r a n d o m  walk (Refs. 
7 -9)  

3. The  T u r i n g - M e i n h a r d t - G i e r e r  reac t ion-di f fus ion approach  to mor-  
phogenesis (Refs. 10-12) 

4. The mechanics  of epithelial folding, invagination, and  periodic thicken- 
ing (Refs. 13, 14) 

5. Growth  and  morphogenesis  in fungi 
6. Bifurcation in aspect space for p r e d a t o r - p r e y  systems (Ref. 15) 



226 Hohenberg and Langer 

References 

1. E. Keller and L. Segel, "The Initiation of Slime Mold Aggregation Viewed as an 
Instability," J. Theoret. Biol. 26:399-415 (1970). 

2. L. Segel and B. Stoeckley, "Instability of a Layer of Chemotactic Cells, Attractant, and 
Degrading Enzyme,"./. Theoret. Biol. 37:516-585 (1972). 

3. V. Nanjundiah, "Chemotaxis Signal Relaying and Aggregation Morphology," J. Theoret. 
Biol. 42:63-105 (1975). 

4. H. Parnas and L. Segel, "A Computer Simulation of Pulsatile Aggregation in 
Dictyostelium Discoideum," J. Theoret. Biol. 71:185-207 (1978). 

5. S. MacKay, "Computer Simulation of Aggregation in Dictyostelium Discoideum," J. Cell 
Sci. 33:1 (1978). 

6. A. Goldbeter and L. Segel, "Control of Developmental Transitions in the Cyclic AMP 
Signalling System of Dictyostelium Discoideum," Differentiation 17:127-135 (1980). 

7. E. Keller and L. Segel, "Travelling Bands of Chemotactic Bacteria: A Theoretical 
Analysis," J. Theoret. Biol. 30:235-248 (1971). 

8. L. Segel, "A Theoretical Study of Receptor Mechanisms in Bacterial Chemotaxis," S l A M  
J. Appl. Math. 32:653-665 (1977). 

9. G. Odell, "Biological Waves" in Mathematical Models in Molecular and Cellular Biology 
(Cambridge University Press, 1980), (hereafter abbreviated M3CB). 

10. A. Turing, "The Chemical Basis of Morphogenesis," Phil. Trans. R. Soc. London Ser. B 
237:5-72 (1952). 

11. H. Meinhardt and A. Gierer, "Applications of a Theory of Biological Pattern Formation 
Based on Lateral Inhibition," J. Cell Sei. 15:321-346 (1974). 

12. Also see section by L. Segel in M3CB (Ref. 9) on PDEs of morphogenesis. 
13. G. Odell, G. Oster, P. Alberch, and B. Burnside, "The Mechanical Basis of Morphogenesis 

I," Dev. Biol. 85 (1981), in press. 
14. G. Oster, G. Odell, and P. Alberch, "Mechanics, Morphogenesis and Evolution," Lect. 

Math. Life Sci. 13:165 (t980). 
15. S. Levin and L. Segel, "Models of the Influence of Predation on Aspect Diversity in Prey 

Populations," preprints available from S. Levin, Section of Ecology and Systematics, 
Cornell University, Ithaca, New York. 


